Name \qquad Date \qquad

Part A : Multiple choice (choose the best response)

1. The graph $f(x)=-4 x+1$ is reflected over the x-axis which produces a graph of $g(x)$. Which is the correct equation of $g(x)$?
a) $g(x)=-4 x-1$
b) $g(x)=-4 x+1$
c) $g(x)=4 x+1$
d) $g(x)=4 x-1$
2. The point $(-4,6)$ is on the graph of $f(x)$. We perform the following transformation $y=-f(x)$. Find the coordinates of the new point.
a) $(4,6)$
b) $(4,-6)$
c) $(-4,6)$
d) $(-4,-6)$
3. The domain of the function is $[-2,4]$ and the range is $[6,8]$. If this function is reflected over the line $y=x$, find the domain of this new function.
a) $[-4,2]$
b) $[-6,-8]$
c) $[6,8]$
d) $[-2,4]$
4. Which of the following is identical to its inverse?
a) $y=2 x$
b) $y=\sqrt{x}$
c) $y=1-x$
d) $y=-1$
5. Find the equation of the following graph:
a) $y=-\sqrt{x-1}$
b) $y=\sqrt{-(x-1)}$
c) $y=-\sqrt{x}-1$
d) $y=\sqrt{-(x+1)}$

6. Find the domain of the following function: $y=\sqrt{3 x+4}$
a) $x \leq-\frac{3}{4}$
b) $x \geq-\frac{3}{4}$
c) $x \geq-\frac{4}{3}$
d) $x \leq-\frac{4}{3}$
7. The point (m, n) is on the graph of $y=f(x)$. Find the coordinates of the point that is on the graph $y=\frac{1}{2} f\left(\frac{x}{4}\right)$.
a) $(4 m, 2 n)$
b) $\left(\frac{m}{4}, 2 n\right)$
c) $\left(\frac{m}{4}, \frac{n}{2}\right)$
d) $\left(4 m, \frac{n}{2}\right)$

Part B : Short Answer

1. The function $f(x)$ has a range of $[-2,4]$. Find the range of the function $y=\sqrt{f(x)}$.
2. The domain of $f(x)$ is $[-4,2]$. Find the domain of the following graph $y=-f(2 x)$.
3. The inverse of the function $f(x)=(x+1)^{2}-3$ is only a function if we restrict the domain of the original function. Give a restriction on $f(x)$ that would guarantee that $y=f^{-1}(x)$ would be a function.
4. Find the equation of the inverse of the following function:
$f(x)=\frac{x-3}{2}+4$
5. Find the equation of $f(x)$ in terms of $g(x)$.

6. The point $(-2,6)$ is on the graph $y=f(x)$. What point would be on the graph of $y=-2 f(x)+1$?

Part C : Long answer (NO CALCULATOR)

1. Given the graph of $f(x)$ on the right, sketch the following graphs.

a) $y=f(x-1)+2$
b) $y=\frac{1}{2} f\left(\frac{x}{2}\right)-1$

c) $y=-f(1-x)$
d) $y=f^{-1}(x)$

e) For «d», give a restriction to the original function that would guarantee that the inverse is a function.
2. a) Given the graph $y=f(x)$, sketch the approximate graph of the function $y=\sqrt{f(x)}$ on the same Cartesian plane.
/3
i.

/2
ii.

b) Explain why the domain of the function $y=\sqrt{f(x)}$ is not the same as the original function, $y=f(x)$.
/1
3. If you were given a graph $y=f(x)$, explain the steps that would be necessary to sketch the graph $y=-2 f(3 x)+1$.
/3
4. Solve the following equation algebraically and graphically. Ensure to properly indicate which equation you are using for your graphs.

$$
\begin{array}{ll}
-2 x-1=\sqrt{2-x}+1 & y_{1}= \\
y_{2}=
\end{array}
$$

