Precal 40S	Test #6 (37-44) C	M. Tougas
		stougas@wsd1.org
Name	Date	-

Part A: Multiple choice (choose the best response)

1. Find the coefficient of the 18th term in the expansion of $(r + s)^{25}$.

a)
$$\frac{25!}{18!7!}$$
 b) $\frac{25!}{17!8!}$ c) $\frac{25!}{16!9!}$ d) $\frac{25!}{10!}$

- 2. Which of the following is equivalent to $_{60}C_{10}$?
- a) $_{60}C_{50}$ b) $_{60}C_{20}$ c) $_{600}C_{100}$ d) $_{6}C_{1}$
- 3. If the 7th term in the expansion of the binomial $(2x y)^n$ is 768768 $x^8 y^6$. What is the value of *n*?
- a) n = 7 b) n = 14 c) n = 15 d) n = 48
- 4. How many permutations can we make with the letters of the word: ENSEIGNANTE

a) 11! b)
$$\frac{11!}{3!3!}$$
 c) $\frac{11!}{6!}$ d) $\frac{11!}{3!3!5!}$

5. Completely simplify : $\frac{(n-1)!}{(n-4)!}$

a)
$$\frac{1}{(n-2)(n-3)(n-4)}$$
 b) $(n-1)(n-2)(n-3)$ c) $(n-2)(n-3)$ d) $(n-1)$

For the questions 6 to 8, use the following functions: $f(x) = \sqrt{x-3}$ and g(x) = x-1

- 6. Find the domain of the function f(g(x)). a) $x \in R$ b) $x \ge 3$ c) $x \ge 2$ d) $x \ge 4$
- 7. Find the range of the function g(f(x)). a) $y \in R$ b) $y \ge 0$ c) $y \ge -1$ d) $y \ge 3$
- 8. Find the equation of the function g(g(x)).
 a) g(g(x)) = x 2 b) g(g(x)) = (x 1)² c) g(g(x)) = x d) g(g(x)) = 2x 2

Part B: Short Answer (non-calculator)

- 1. How many terms will there be in the expansion of the binomial $(3x^2 1)^7$?
- 2. How many arrangements of the letters ABCDEF can be made if AB and CD must be together. Leave your answer in factorial form.
- 3. Solve the following equation: $\frac{(n-4)!}{(n-5)!} = 6$
- 4. Marble Slab offers 3 different types of ice cream, 2 types of cones and 5 types of toppings. If we must chose one of each, how many different types of ice cream cones can we create?
- 5. Find the first term in the expansion of $(3x^2 2)^{12}$? It is not necessary to simplify this term.

Use the following graph to evaluate the following expressions:

n =

6. f(f(1))

7. (g - f)(0)

Part C : Long answer (NO CALCULATOR)

1. Given the following graphs, sketch the graph of g(x) if h(x) = f(x) - g(x). (Hint : A table of values might help)

How many numbers of 4 positions can we make if the number must be larger than 5370 and if we can only use the numbers 2, 3, 4, 5, 7 and 8 without repetition?

3. Solve algebraically: $_{n}P_{2} = 110$

```
/3
```

4. If $f(x) = x^2 - 1$ and g(x) = x + 1;

a) Find the equation of a simplified equation of the function $h(x) = \frac{f(x)}{g(x)}$. /2

b) Find the domain of h(x). /1

Part D: Long answer (WITH CALCULATOR)

Name :

5. Find the simplified term that contains x^{23} in the expansion of the binomial $\left(\frac{x}{2} - 3x^4\right)^8$?

/4

6. There are 5 girls and 4 boys. We must make a group of 5 people.

a) How many different groups of 5 people can we make?

/1

b) How many different groups are possible if there must be at least 3 girls in the group?

/2

c) Irena and Serena are 2 of the 5 girls. If we chose one of these girls we must chose the other. Note that you do not have to pick either of these girls. How many different groups can we make?