Name \qquad Date \qquad

Part A: Multiple choice (choose the best response)

1. Find the coefficient of the $18^{\text {th }}$ term in the expansion of $(r+s)^{25}$.
a) $\frac{25!}{18!7!}$
b) $\frac{25!}{17!8!}$
c) $\frac{25!}{16!9!}$
d) $\frac{25!}{10!}$
2. Which of the following is equivalent to ${ }_{60} C_{10}$?
a) ${ }_{60} C_{50}$
b) ${ }_{60} C_{20}$
c) ${ }_{600} C_{100}$
d) ${ }_{6} C_{1}$
3. If the $7^{\text {th }}$ term in the expansion of the binomial $(2 x-y)^{n}$ is $768768 x^{8} y^{6}$. What is the value of n ?
a) $n=7$
b) $n=14$
c) $n=15$
d) $n=48$
4. How many permutations can we make with the letters of the word: ENSEIGNANTE
a) 11 !
b) $\frac{11!}{3!3!}$
c) $\frac{11!}{6!}$
d) $\frac{11!}{3!3!5!}$
5. Completely simplify : $\frac{(n-1)!}{(n-4)!}$
a) $\frac{1}{(n-2)(n-3)(n-4)}$
b) $(n-1)(n-2)(n-3)$
c) $(n-2)(n-3)$
d) $(n-1)$

For the questions 6 to 8, use the following functions: $f(x)=\sqrt{x-3}$ and $g(x)=x-1$
6. Find the domain of the function $f(g(x))$.
a) $x \in R$
b) $x \geq 3$
c) $x \geq 2$
d) $x \geq 4$
7. Find the range of the function $g(f(x))$.
a) $y \in R$
b) $y \geq 0$
c) $y \geq-1$
d) $y \geq 3$
8. Find the equation of the function $g(g(x))$.
a) $g(g(x))=x-2$
b) $g(g(x))=(x-1)^{2}$
c) $g(g(x))=x$
d) $g(g(x))=2 x-2$

Part B: Short Answer (non-calculator)

1. How many terms will there be in the expansion of the binomial $\left(3 x^{2}-1\right)^{7}$?
2. How many arrangements of the letters $A B C D E F$ can be made if $A B$ and $C D$ must be together. Leave your answer in factorial form.
3. Solve the following equation: $\frac{(n-4)!}{(n-5)!}=6$

$$
n=
$$

\qquad
4. Marble Slab offers 3 different types of ice cream, 2 types of cones and 5 types of toppings. If we must chose one of each, how many different types of ice cream cones can we create?
5. Find the first term in the expansion of $\left(3 x^{2}-2\right)^{12}$? It is not necessary to simplify this term.

Use the following graph to evaluate the following expressions:
6. $f(f(1))$
7. $(g-f)(0)$

Part C : Long answer (NO CALCULATOR)

1. Given the following graphs, sketch the graph of $g(x)$ if $h(x)=f(x)-g(x)$. (Hint : A table of values might help)

/3

2. How many numbers of 4 positions can we make if the number must be larger than 5370 and if we can only use the numbers $2,3,4,5,7$ and 8 without repetition?
3. Solve algebraically: ${ }_{n} P_{2}=110$
/3
4. If $f(x)=x^{2}-1$ and $g(x)=x+1$;
a) Find the equation of a simplified equation of the function $h(x)=\frac{f(x)}{g(x)}$.
b) Find the domain of $h(x)$.
/1

Part D: Long answer (WITH CALCULATOR)

Name : \qquad
5. Find the simplified term that contains x^{23} in the expansion of the binomial $\left(\frac{x}{2}-3 x^{4}\right)^{8}$?
/4
6. There are 5 girls and 4 boys. We must make a group of 5 people.
a) How many different groups of 5 people can we make?
/1
b) How many different groups are possible if there must be at least 3 girls in the group?
/2
c) Irena and Serena are 2 of the 5 girls. If we chose one of these girls we must chose the other. Note that you do not have to pick either of these girls. How many different groups can we make?

